Abnormal Expressions of DNA Glycosylase Genes NEIL1, NEIL2, and NEIL3 Are Associated with Somatic Mutation Loads in Human Cancer

نویسندگان

  • Kazuya Shinmura
  • Hisami Kato
  • Yuichi Kawanishi
  • Hisaki Igarashi
  • Masanori Goto
  • Hong Tao
  • Yusuke Inoue
  • Satoki Nakamura
  • Kiyoshi Misawa
  • Hiroyuki Mineta
  • Haruhiko Sugimura
چکیده

The effects of abnormalities in the DNA glycosylases NEIL1, NEIL2, and NEIL3 on human cancer have not been fully elucidated. In this paper, we found that the median somatic total mutation loads and the median somatic single nucleotide mutation loads exhibited significant inverse correlations with the median NEIL1 and NEIL2 expression levels and a significant positive correlation with the median NEIL3 expression level using data for 13 cancer types from the Cancer Genome Atlas (TCGA) database. A subset of the cancer types exhibited reduced NEIL1 and NEIL2 expressions and elevated NEIL3 expression, and such abnormal expressions of NEIL1, NEIL2, and NEIL3 were also significantly associated with the mutation loads in cancer. As a mechanism underlying the reduced expression of NEIL1 in cancer, the epigenetic silencing of NEIL1 through promoter hypermethylation was found. Finally, we investigated the reason why an elevated NEIL3 expression level was associated with an increased number of somatic mutations in cancer and found that NEIL3 expression was positively correlated with the expression of APOBEC3B, a potent inducer of mutations, in diverse cancers. These results suggested that the abnormal expressions of NEIL1, NEIL2, and NEIL3 are involved in cancer through their association with the somatic mutation load.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The mouse ortholog of NEIL3 is a functional DNA glycosylase in vitro and in vivo.

To protect cells from oxidative DNA damage and mutagenesis, organisms possess multiple glycosylases to recognize the damaged bases and to initiate the Base Excision Repair pathway. Three DNA glycosylases have been identified in mammals that are homologous to the Escherichia coli Fpg and Nei proteins, Neil1, Neil2, and Neil3. Neil1 and Neil2 in human and mouse have been well characterized while ...

متن کامل

Neil3 and NEIL1 DNA glycosylases remove oxidative damages from quadruplex DNA and exhibit preferences for lesions in the telomeric sequence context.

The telomeric DNA of vertebrates consists of d(TTAGGG)n tandem repeats, which can form quadruplex DNA structures in vitro and likely in vivo. Despite the fact that the G-rich telomeric DNA is susceptible to oxidation, few biochemical studies of base excision repair in telomeric DNA and quadruplex structures have been done. Here, we show that telomeric DNA containing thymine glycol (Tg), 8-oxo-7...

متن کامل

The NEIL glycosylases remove oxidized guanine lesions from telomeric and promoter quadruplex DNA structures

G-quadruplex is a four-stranded G-rich DNA structure that is highly susceptible to oxidation. Despite the important roles that G-quadruplexes play in telomere biology and gene transcription, neither the impact of guanine lesions on the stability of quadruplexes nor their repair are well understood. Here, we show that the oxidized guanine lesions 8-oxo-7,8-dihydroguanine (8-oxoG), guanidinohydan...

متن کامل

Functional variants of the NEIL1 and NEIL2 genes and risk and progression of squamous cell carcinoma of the oral cavity and oropharynx.

PURPOSE Human DNA glycosylases NEIL1 and NEIL2 participate in oxidized base excision repair and protect cells from DNA damage. NEIL1 (MIM:608844) and NEIL2 (MIM:608933) variants may affect their protein functions, leading to altered cell death and carcinogenesis. To date, only one reported study has investigated the association between NEIL1 and NEIL2 polymorphisms and cancer risk. EXPERIMENT...

متن کامل

Deoxyribophosphate lyase activity of mammalian endonuclease VIII-like proteins.

Base excision repair (BER) protects cells from nucleobase DNA damage. In eukaryotic BER, DNA glycosylases generate abasic sites, which are then converted to deoxyribo-5'-phosphate (dRP) and excised by a dRP lyase (dRPase) activity of DNA polymerase beta (Polbeta). Here, we demonstrate that NEIL1 and NEIL2, mammalian homologs of bacterial endonuclease VIII, excise dRP by beta-elimination with th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016